Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation

نویسندگان

  • Todd W. Roy
  • A. S. Bhagwat
چکیده

The Escherichia coli AlkB protein catalyzes the direct reversal of alkylation damage to DNA; primarily 1-methyladenine (1mA) and 3-methylcytosine (3mC) lesions created by endogenous or environmental alkylating agents. AlkB is a member of the non-heme iron (II) alpha-ketoglutarate-dependent dioxygenase superfamily, which removes the alkyl group through oxidation eliminating a methyl group as formaldehyde. We have developed a fluorescence-based assay for the dealkylation activity of this family of enzymes. It uses formaldehyde dehydrogenase to convert formaldehyde to formic acid and monitors the creation of an NADH analog using fluorescence. This assay is a great improvement over the existing assays for DNA demethylation in that it is continuous, rapid and does not require radioactively labeled material. It may also be used to study other demethylation reactions including demethylation of histones. We used it to determine the kinetic constants for AlkB and found them to be somewhat different than previously reported values. The results show that AlkB demethylates 1mA and 3mC with comparable efficiencies and has only a modest preference for a single-stranded DNA substrate over its double-stranded DNA counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic studies on the application of DNA aptamers as inhibitors of 2-oxoglutarate-dependent oxygenases.

The Escherichia coli (E. coli) AlkB protein and its functional human homologues belong to a subfamily of 2-oxoglutarate (2OG) dependent oxygenases (2OG oxygenases for simplicity) that enable the repair of cytotoxic methylation damage in nucleic acids and that catalyze t-RNA oxidations. DNA alkylation is a major mechanism of action for cytotoxic anticancer drugs. Thus, the inhibition of oxidativ...

متن کامل

Preparation and characterization of the native iron(II)-containing DNA repair AlkB protein directly from Escherichia coli.

The Escherichia coli AlkB protein was recently found to repair cytotoxic DNA lesions 1-methyladenine and 3-methylcytosine by using a novel iron-catalyzed oxidative demethylation mechanism. This protein belongs to a family of 2-ketoglutarate-Fe(II)-dependent dioxygenase proteins that utilize iron and 2-ketoglutarate to activate dioxygen for oxidation reactions. We report here the overexpression ...

متن کامل

Minimal methylated substrate and extended substrate range of Escherichia coli AlkB protein, a 1-methyladenine-DNA dioxygenase.

The Escherichia coli AlkB protein, and two human homologs ABH2 and ABH3, directly demethylate 1-methyladenine and 3-methylcytosine in DNA. They couple Fe(II)-dependent oxidative demethylation of these damaged bases to decarboxylation of alpha-ketoglutarate. Here, we have determined the kinetic parameters for AlkB oxidation of 1-methyladenine in poly(dA), short oligodeoxyribonucleotides, nucleot...

متن کامل

A real-time PCR-based quantitative assay for 3-methylcytosine demethylase activity of ALKBH3

Human AlkB homolog 3 (ALKBH3), a homolog of the Escherichia coli protein AlkB, demethylates 1-methyladenine and 3-methylcytosine (3-meC) in single-stranded DNA and RNA by oxidative demethylation. Immunohistochemical analyses on clinical cancer specimens and knockdown experiments using RNA interference in vitro and in vivo indicate that ALKBH3 is a promising molecular target for the treatment of...

متن کامل

Direct analysis of enzyme-catalyzed DNA demethylation.

N/O-methylation of DNA can be cytotoxic and mutagenic; therefore, enzymes that reverse DNA methylation are essential for organism survival. Several 2-oxoglutarate-dependent oxygenases and methyltransferases that remove a methyl group from a methylated DNA base have been identified. Studies of their kinetics and search for their inhibitors have been retarded by the lack of an approach to directl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007